Molecular modeling of mechanism of action of anti-myasthenia gravis slow-binding inhibitor of acetylcholinesterase.
نویسندگان
چکیده
BACKGROUND Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder characterized by fluctuating weakness of voluntary skeletal muscles. The cause of autoimmune response is unknown and only symptomatic therapies for MG are currently available. Pharmacological correction of synaptic failure underlying MG, involves partial inhibition acetyl- and butyrylcholinesterase. Effectiveness of cholinesterase inhibitors in the symptomatic treatment of MG is based on their ability to potentiate the effects of acetylcholine by decreasing the rate of its enzymatic hydrolysis at neuromuscular junctions. Several new inhibitors of AChE were tested in animal model of MG and may be considered as valuable candidates for the treatment of pathological muscle weakness syndromes. In this study, we have investigated mechanisms of ChE inhibition by one of the most active 6-methyluracil derivatives (C547), as well as the possible benefits of using this compound for MG treatment compared to traditionally used pyridostigmine bromide.It was experimentally shown that C547 is a «pseudo-irreversible» slow-binding inhibitor of human AChE. Human BChE is reversibly inhibited by C547 with an affinity about 4 orders of magnitude lower than that of human AChE. Slow-binding inhibition of AChE leads to a lasting (over 24 hours) effect on the symptoms of muscle weakness in animal model of MG after a single administration of C547. OBJECTIVE The aim of the present molecular modeling study was to reveal mechanism of AChE inhibition by C547 and elucidate its apparent «pseudo-irreversibility». METHODS Two principle methods used in the present study were molecular docking and molecular dynamics (MD). Molecular docking was performed with Autodock 4.2.6 software, Lamarckian Genetic Algorithm to obtain structure of protein inhibitor complexes and Local Search for MD snapshots to compare relative binding affinity. For MD simulations NAMD 2.10 software with Charrm 36 force field was used, for the ligand C547 Charmm General Force Field was used, and missing parameters were obtained with quantum mechanical calculations. Unconstrained MD, steered MD (SMD) and free energy calculations with adaptive biasing force were performed. RESULTS During unconstrained MD, C547 very rapidly binded to the peripheral anionic site (PAS) of AChE. To pass the bottleneck, application of the external force was required (SMD). Both SMD modelling and free energy calculation revealed that after crossing the AChE bottleneck, C547 falls into very favorable position. At the same time the rupture of interactions as well as overcoming the bottleneck gates in the course of pulling out procedure requires application of much higher force than during the pulling-in process. This difference between binding and dissociating processes explains apparent «pseudo-irreversibility» of the inhibitor. CONCLUSIONS These findings are in good agreement with kinetics study showing that C-547 is a slow-binding inhibitor of type B, i.e. after rapid initial binding of inhibitor, the enzyme-inhibitor complex undergoes an isomerization step. Position obtained by SMD is in good agreement with X-ray data obtained by F. Nachon, IBS, France.
منابع مشابه
Linarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo
Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in vitro and ex vivo. Ellman’s colorimetric method was used for...
متن کاملLinarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo
Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in vitro and ex vivo. Ellman’s colorimetric method was used for...
متن کاملThymolipoma-associated Myasthenia Gravis with High Titer of Anti-MuSKAb: A Case Report
Myasthenia Gravis (MG) is a neuromuscular junction disorder caused by pathogenic autoantibodies to some parts of the post-synaptic muscle endplates. About 85% of generalized MG patients have autoantibodies against post-synaptic acetyl-choline receptors (AChR). From the 10-15% of the remaining patients, 45-50% are positive for Muscle Specific Tyrosine Kinase-Antibody (MuSK-Ab). It is believed th...
متن کاملAcetylcholinesterase: molecular modeling with the whole toolkit.
Molecular modeling efforts aimed at probing the structure, function and inhibition of the acetylcholinesterase enzyme have abounded in the last decade, largely because of the system's importance to medical conditions such as myasthenia gravis, Alzheimer's disease and Parkinson's disease, and well as its famous toxicological susceptibility to nerve agents. The complexity inherent in such a syste...
متن کاملLigand-based pharmacophore modeling to identify plant-derived acetylcholinesterase inhibitor natural compounds in Alzheimer’s disease
Background: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by decreased cognitive function in patients due to forming Aβ peptides and neurofibrillary tangles (NFT) in the brain. Therefore, the need to develop new treatments can reduce this risk. Acetylcholinesterase is one of the targets used in the design of new drugs for the treatment of AD. The researchers obtain new i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of risk & safety in medicine
دوره 27 Suppl 1 شماره
صفحات -
تاریخ انتشار 2015